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Ecological communities that experience stable climate con-

ditions have been speculated to preserve more specialized

interspecific associations and have higher proportions of

smaller ranged species (SRS). Thus, areas with dispropor-

tionally large numbers of SRS are expected to coincide

geographically with a high degree of community-level eco-

logical specialization, but this suggestion remains poorly

supported with empirical evidence. Here, we analysed

data for hummingbird resource specialization, range size,

contemporary climate, and Late Quaternary climate stab-

ility for 46 hummingbird–plant mutualistic networks

distributed across the Americas, representing 130 hum-

mingbird species (ca 40% of all hummingbird species).

We demonstrate a positive relationship between the pro-

portion of SRS of hummingbirds and community-level

specialization, i.e. the division of the floral niche among

coexisting hummingbird species. This relationship

remained strong even when accounting for climate, further-

more, the effect of SRS on specialization was far stronger

than the effect of specialization on SRS, suggesting that cli-

mate largely influences specialization through species’

range-size dynamics. Irrespective of the exact mechanism

involved, our results indicate that communities consisting

of higher proportions of SRS may be vulnerable to disturb-

ance not only because of their small geographical ranges,

but also because of their high degree of specialization.
1. Introduction
Ecological specialization may facilitate species coexistence

and speciation and is therefore hypothesized to structure

global patterns of biodiversity [1]. Notably, higher degrees

of community-level resource specialization, i.e. the division

of local resources, may be associated with reduced inter-

specific competition and greater local richness [2]. It is

therefore debated whether high ecological specialization in

the tropics may contribute to the observed continental-

scale increase in species richness towards the tropics [3–10].

Likewise, it is speculated that large-scale geographical differ-

ences in ecological specialization coincides with patterns of

range-size frequency distributions [11].

We address this and the role of extrinsic factors, such as

climate, as potential determinants of community-level special-

ization and range-size distributions. The contemporary

climate has been suggested to influence ecological specializ-

ation, with communities in productive areas having the

highest degree of specialization [12,13]. Similarly, in areas

with low contemporary seasonality, where resource availability

is supposedly relatively stable throughout the year,
communities may have a higher degree of specialization than

those found in more seasonal environments [14–16]. Recent

studies have also pointed towards historical climate fluctu-

ations as influencing the local degree of specialization, as

unstable climatic conditions are hypothesized to disrupt

specialized species interactions, either through changes in the

phenology of species or through increased dynamics in range-

size position [6,11,17–19]. Thus, ecological and historical

factors may both shape geographical patterns of specializa-

tion. This has been found for hummingbird–plant networks,

which have higher community-wide specialization in areas

with higher precipitation and temperature, lower seasonality,

and more stable climate conditions since the last glacial

maximum [6,20].

The contemporary and historical climate may also affect the

geographical distribution of species range-sizes [21–23]. For

instance, variable climate conditions have traditionally been

suggested to select for broad environmental tolerance, which

promotes large ranges in seasonal areas [23–27], though see

[28,29]. A highly seasonal climate may also force species to

migrate in order to track suitable environmental conditions,

and as smaller ranged species (SRS) have been suggested to

have weaker dispersal ability than larger ranged species [30],

they are more likely to be residents in seasonally stable environ-

ments. This reasoning may be extended to historical

fluctuations in climate, which may have forced species either

to adapt to the new conditions, track suitable climatic con-

ditions, or to go locally extinct. As SRS may struggle to track

suitable climate conditions [30], these would suffer from

an increased probability of local extinction under climate

change [27,31]. In accordance with this, Late Quaternary

climate-change velocity correlates negatively with the global

distribution of proportionally smaller ranged amphibian,

mammal, and bird species [31].

Taken together, numerous studies have pointed towards

historical climate stability and low contemporary seasonality

as being important to support both ecological specialization

and high proportions of SRS. Thus, areas with disproportion-

ally large numbers of SRS are expected to coincide

geographically with a high degree of community-level ecologi-

cal specialization, but this hypothesis remains poorly

supported [6,11,19]. We test this using a database consisting

of 46 quantitative hummingbird–plant networks, i.e. local

community studies recording the frequency of visits between

all coexisting hummingbird and plant species. The 46 networks

are distributed widely across the American mainland [20].

Specifically, we investigate: (i) whether specialization in hum-

mingbird–plant networks is positively related with the

proportion of SRS in a community, and (ii) the nature of the

causal relationship between climate (contemporary and Late

Quaternary), specialization, and SRS. Hummingbirds are

well suited for such large-scale comparative studies on the pat-

tern of ecological specialization as they are highly specialized

on nectar-feeding, and because hummingbird pollinators and

plants are mutually dependent [32–34]. Moreover, humming-

birds are highly successful, being the second most species-rich

family of birds, and able to thrive in an array of environments

across most of the Americas [35]. Hence, hummingbird–plant

communities have long served as a model system for

examining ecological and evolutionary processes as determi-

nants of ecological specialization at the community level

[32,33]. Our study advances the current understanding of how

geographical patterns of range size and specialization are
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Figure 1. Geographical pattern of specialization and the proportion of smaller ranged species (SRS) for 46 hummingbird communities across the mainland Americas.
The colouration of each circle on the map indicates the degree of specialization in relation to the proportion of SRS; black indicates both high SRS and specialization,
white conversely indicates both low SRS and degree of specialization. Orange and blue indicate poorer correlation through either high SRS or specialization, respect-
ively. Note that some points have been slightly moved to avoid overlap. SRS was arcsine square-root transformed to improve normality. The painted illustration
shows three hummingbird species from the Costa Rican highlands, where the network with the highest degree of specialization and SRS is found in the dataset
(specialization ¼ 0.782, SRS ¼ 0.6). From the top: volcano hummingbird (Selasphorus flammula), white-bellied mountain-gem (Lampornis hemileucus), and
fiery-throated hummingbird (Panterpe insignis). Painting by Jon Fjeldså.
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shaped, and has additional implications for the conservation of

species communities with specialized associations.
2. Material and methods
(a) Hummingbird – plant network data
We used a database consisting of 46 hummingbird–plant net-

works [20], from which we constructed weighted interaction

networks for the hummingbirds and their associated nectar

plants (figure 1). Taking a network approach allows detailed

information about the interaction frequencies between all hum-

mingbird and plant species within a given community to be

summarized as a metric value (see below). We applied a network

approach (as opposed to a species-level approach) as we aimed

to assess the processes operating at the community level, notably

whether areas with disproportionally large numbers of SRS

coincide geographically with communities with a high degree

of ecological specialization. For this study, mutualistic networks

were presented as matrices consisting of P (number of plant

species) � H (number of hummingbird species) with matrix

entries indicating the frequency of each interaction (i.e. the

number of visitations recorded for a given hummingbird–plant

species pair). Known incidents of nectar robbing, for instance if

a hummingbird pierced the flower corolla without contacting

the floral reproductive organs, were not considered since they

represent antagonistic rather than mutualistic interactions [36].

We included a network in the study if it fulfilled the following

criteria: (i) each study must have a community approach, i.e.

aiming to include all hummingbird and hummingbird-visited

plant species within the given community over the sampled

period, (ii) networks need to consist of weighted data, i.e. include

frequency of interactions, since binary networks are more
sensitive to differences in sampling effort [37], and (iii) island net-

works were not included since species from islands are naturally

constrained in their geographical distribution by the hard range

boundaries imposed by the sea. Measuring species range-size

solely as the number of occupied grid cells would therefore contain

less biological and mostly geographical information and, hence, is

not comparable to range sizes on the continent.
(b) Measuring hummingbird range-size proportions
The geographical range-size of each hummingbird species was

extracted from an updated database previously presented in

Rahbek & Graves [38]—see [39,40] for details on method and

data sources. As an estimate of hummingbird geographical

range-size, we used the total number of occupied 18 � 18 lati-

tude–longitude grid cells. Following Jetz & Rahbek [41], in order

to determine the community-level proportion of smallest ranging

species, we divided the total number of species (n ¼ 130) into quar-

tiles according to range size, i.e. the first quartile consists of 25% of

species with the smallest ranges (n ¼ 33) and the fourth quartile

consists of the 25% with the largest range sizes. For each network,

we calculated the proportion of first quartile species. This measure

is better suited to quantify the relative importance of smaller

ranged hummingbird species in a given community than the

mean or median range size of co-occurring species, as wide-

ranging species contribute with more distributional records than

narrow-ranging species [41]. Specifically for our dataset, since

larger ranging species occurred in many of the studied commu-

nities, the mean and median range size in a given community

was mostly determined by the range sizes of these species (Pearson

correlation between mean and median range size and the

proportion of large-ranging species (fourth quartile): n ¼ 46, r ¼
0.86, p , 0.001; r ¼ 0.83, p , 0.001, respectively).
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It should be noted, however, that the range-size frequency

distribution (RSFD) of our data is skewed towards larger

ranges than the RSFD of all hummingbird species of the world

(electronic supplementary material, figure S1). This is why we

refer to first quartile species as ‘smaller ranged’ species rather

than using the term ‘restricted-range’ species as in Jetz &

Rahbek [41] and others using continental data on all species

(see also ‘Statistical Analyses’). The community-level proportion

of SRS was arcsine square-root transformed before further

analysis.

(c) Specialization, richness, environmental variables,
and sampling intensity

Following Blüthgen et al. [42] ecological specialization kd0l for

each hummingbird community was calculated as the weighted

mean of the normalized Kullback–Leibler distance for all coexist-

ing hummingbird species [43]. The estimate is based on the

number of visits recorded between each animal and plant species

(here hummingbirds and their nectar plants) and has been

shown to be relatively insensitive to sampling intensity and net-

work size (see electronic supplementary material, S2, for details

regarding the calculation [42,44,45]). Conceptually, kd0il quantifies

the uniqueness of the realized Eltonian niche of species [46], rela-

tive to the other species in the community, accounting for

differences in species availability. Since independent estimates of

species abundance were not available for most networks, we

followed Blüthgen et al. and used the total number of interactions

of each hummingbird and plant species in each respective network

as measures of species availability [42,47]. Hummingbird special-

ization kd0il was related to network size [6], i.e. the richness of

hummingbird and plant species in the network (correlation coeffi-

cient; r ¼ 0.38, p ¼ 0.009), and network asymmetry [48], i.e. the

ratio between the richness of hummingbird and plant species

(r ¼ 0.43, p ¼ 0.003). Conversely, variation in sampling intensity,

calculated for each network by dividing the total number of

observed interactions (square-root transformed) with the rich-

ness for plants and hummingbirds [49], showed no significant

associations to specialization (r ¼ 20.28, p . 0.05).

The contemporary climate variables hypothesized to predict

specialization and SRS, i.e. mean annual temperature (MAT),

mean annual precipitation (MAP), temperature seasonality (i.e.

standard deviation in annual temperature; TS), and precipitation

seasonality (i.e. coefficient of variation for annual precipitation:

PS), were extracted from the WorldClim database with a resol-

ution of 1 � 1 km (http://www.worldclim.org; [50]). We

estimated variables reflecting historical climate change as the

absolute difference in temperature and precipitation between pre-

industrial time and the last glacial maximum (21 000 years ago),

i.e. temperature and precipitation anomalies (AnomT and

AnomP). To generate projections of climate anomaly, we used the

Hadley Centre Model v. 3 (HadCM3) at 3.75 � 2.5 arc degrees res-

olution and subsequently statistically downscaled to 0.1 � 0.1 arc

degrees [51]. We also included a measure of topographic heterogen-

eity (i.e. range in elevation; TH), as predictors of both specialization

and SRS [52,53]. Historical climate and topography are known to

have interactive effects [31], so, in supplementary analyses, we

included estimates of temperature and precipitation velocity

(VelT and VelP), which capture the buffering effect in mountain

areas where species can track their original climate zone by

migrating a short distance up or down slope [54]. For each commu-

nity, TH and estimates of historical and contemporary climate were

calculated as the average of values within a radius of 10 km from

the sampled location. Given the large geographical extent of the

data, we assume that the regional downscaled climate estimates

are good indicators of the variation of local climate among commu-

nities. To meet statistical assumptions of normality, MAT was

squared and MAP, TS, AnomT, AnomP, VelT, and VelP were
log-transformed prior to further analyses. All variables were

scaled to zero mean and unit variance.

(d) Statistical analyses
Structural equation models (SEMs) are statistical tools used to

evaluate multivariate hypotheses. Compared to multiple

regression models, the main advantage is that they seek to

account for both direct and indirect effects among predictor

and response variables while allowing multiple dependent vari-

ables to be tested simultaneously. We constructed two SEMs

based on a priori hypotheses, considering different causal paths

among the response variables. First, we considered a link from

SRS to specialization, corresponding to a scenario where a high

proportion of SRS (e.g. through lowered range-size dynamics)

affects the degree of hummingbird specialization in the local

plant community. Second, we considered the opposite link

from specialization to SRS, corresponding to a scenario where

the degree of hummingbird specialization in a local community

influences hummingbirds’ range-size. Due to the relatively low

sample size (n ¼ 46) in comparison to the number of predictor

variables, the two models were simplified through an a priori
variable selection based on the Akaike information criterion

(AIC). Specifically, for each response variable, we fitted linear

models including all possible combinations of potential predictor

variables and only included those predictors in the initial SEM

that were represented in at least one of the best-fit models, i.e.

DAIC , 2 in relation to the model with the lowest AIC ([55]; elec-

tronic supplementary material, figure S2). The two SEMs were

evaluated through the x2 test, comparative fit index (CFI), and

the Root Mean Square Error of Approximation (RMSA) [56].

The x2 value indicates the divergence between the sample and

the fitted structures in the data; a non-significant result ( p .

0.05) indicates good model fit. The CFI compares the x2 of the

model with the x2 value of an independent model assuming

no correlation among all variables while accounting for sample

size. With a range from 0 to 1, we accepted models with

CFIs . 0.09 [57]. Lastly, the RMSA was considered because of

its sensitivity to the number of estimated parameters in the

model. Here, values below 0.07 were used as an indication of

good model fit [57]. We expected some degree of correlation

among the included climate predictors. In order to obtain reliable

model fit according to the three above-mentioned indices, we

identified and added this covariance based on high modification

indices and large residual correlations [58,59]. By stepwise refit-

ting, we simplified the SEMs, removing non-significant links

conditional on the model fit, i.e. assessed by the x2 test, CFI,

and RMSA, being satisfied [60,61]. As the two final SEMs

differ in the number of climate variables included (see Results;

figure 2), we cannot use the x2 test, CFI, and RMSA measures

of fit for comparison of model fit among the final SEM models.

Hence, the contribution of each predictor variable was evaluated

through the standardized path coefficients. All SEMs were

constructed and analysed with the R package lavaan [62].

Supplementary analyses showed negligible effects of residual

spatial autocorrelation on the SEM results (electronic supple-

mentary material, S4). Other supplementary analyses were

conducted to first account for the potential biases of network

size and asymmetry on specialization. Here, instead of using raw

values of specialization, we fitted SEMs including residuals of a

linear regression predicting specialization by network size and net-

work asymmetry (electronic supplementary material, figure S5).

Secondly, to test if our results are sensitive to the used historical cli-

mate metric, we fitted SEMs using climate velocities rather than

anomalies (electronic supplementary material, figure S6). Thirdly,

we evaluated the robustness of the results with use of different

range-size cut-offs to define SRS (i.e. ranging from 20% to 30% of

species having the smallest range sizes; electronic supplementary

material, figure S7). Fourthly, because the RSFD of our data is

http://www.worldclim.org
http://www.worldclim.org
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skewed towards larger ranges than the RSFD of all hummingbird

species of the world (electronic supplementary material, figure S1),

analyses were conducted using a redefined measure of the pro-

portion of SRS based on the first quartile species of the global

pool of mainland hummingbird species (n ¼ 318), as in Jetz et al.
[63], rather than the one in our dataset (n ¼ 130; electronic sup-

plementary material, figure S8). Finally, the latitudinal variation

in continental or biome width may constitute hard boundaries to

the range size of species [28,64], which could also influence the

association between SRS and specialization. To account for this,

we corrected the empirical SRS values by a null model, which

uses geographical dispersion fields to sample species randomly

and thereby generate null SRS values for each community [65].

The null model integrates data of the presence–absence of all

318 hummingbird species across mainland Americas at a 18 � 18
latitude–longitude resolution. The probability of sampling species

from grid cells is weighted by the similarity in species composition

with the focal network. For each community, this creates a regional

source pool of species based on the concept that dispersal of

species is most likely to occur among biogeographically similar

regions [66,65]. Thus, we defined the regional source pool of

each focal community based on the idea that species living in
communities with more similar species compositions constitute

its source pool by higher probability (see electronic supplementary

material, S9, for algorithmic details). Deviations between the

observed SRS values and the density curve of the null-generated

SRS values were standardized as a z-score:

SRSz ¼ SRSobserved � SRSnull

sdðSRSnullÞ
:

3. Results
We found a positive correlation between specialization and

SRS (r ¼ 0.39, p , 0.001, n ¼ 46). For the SEM containing a

hypothesized predictive effect from specialization to SRS, a

positive association was found between the two (standardized

coefficient; b ¼ 0.43, figure 2a). Here, we found that SRS was

negatively associated with TS (b ¼ 20.42) and positively

associated with topographical heterogeneity (TH; b ¼ 0.42)

and temperature anomaly (AnomT; b ¼ 0.23), whereas

specialization was negatively related to temperature anomaly
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(AnomT; b ¼ 20.37) and positively related to both MAP (b ¼

0.31) and precipitation anomaly (AnomP; b ¼ 0.34). In the

SEM considering the scenario where specialization is affected

by SRS (figure 2b), there was a strong positive link from SRS

to specialization (b ¼ 0.75). In comparison to the first SEM,

we here found additional links between specialization and

MAT (b ¼ 0.29), TS (b ¼ 0.31) and a positive influence of

AnomP on SRS instead of on specialization (AnomP;b ¼ 0.24).

The strong association between SRS and specialization

was insensitive to specialization estimates when correcting

for network size and asymmetry (electronic supplementary

material, figure S5). The results from the SEM pairs including

interactive effects of TH and historical climate through esti-

mates of climate-change velocities also showed similar

results (electronic supplementary material, figure S6).

Linear regression including SRS variables calculated using

different range-size cut-offs to define SRS (ranging from 20%

to 30% of species having the smallest range sizes) demonstrated

a robust association between the degree of specialization and

SRS (electronic supplementary material, figure S7). Likewise,

when using the first quartile of the global mainland species

pool of hummingbirds rather than the first quartile of our data-

set as a threshold to define SRS, the positive association to

specialization was maintained (electronic supplementary

material, figure S8). Finally, the null-model-corrected SRS

remained significantly positively associated with specialization

(R2 ¼ 0.357, p , 0.001, n ¼ 46; figure 3), indicating that the

influence of biome or continental width on the range size of
species is negligible in respect to the association between SRS

and specialization.
4. Discussion
For hummingbird–plant networks across mainland Americas,

we found that communities with high proportions of SRS also

have a high degree of ecological specialization (figures 1 and 2).

The association between SRS and specialization was insensitive

to the definition used for SRS (electronic supplementary

material, figures S7 and S8), to the influence of biome or conti-

nental width as accounted for by a null model (figure 3), and to

the influence of species richness and network asymmetry on

specialization (electronic supplementary material, figure S5).

Also, although topography was an important predictor of

SRS, and contemporary and historical climate were important

for the prediction of both SRS and specialization, it did not

affect the strong association between specialization and SRS

(figure 2; electronic supplementary material, figure S6).

The question is then which mechanism causes SRS and

specialization to be interrelated.

In respect to current climate, precipitation was positively

correlated with hummingbird specialization, possibly due to

either increased productivity and thus greater opportunities

for specialization, or a lower importance of insect pollinators

in comparison to hummingbirds as pollinators in more

rainy conditions, thereby favouring hummingbird–plant
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specialization [5,67,68]. Most interestingly for our study, we

found a strong consistent negative association between TS and

SRS (figure 2) and, when accounting for the indirect effects of cli-

mate on specialization via SRS, a direct positive association of TS

on specialization appeared (figure 2b). A similar positive associ-

ation between modularity and TS has been documented for

frugivorous bird–plant networks [49], which was argued to

derive from a higher annual turnover in species composition

and interactions in more seasonal environments. The combined

effects of topography and climate seasonality on SRS (figure 2),

together with the much stronger effect of SRS on specialization

than vice versa (b ¼ 0.75 versus b ¼ 0.43), is in accordance with

the hypothesis that climate stability may increase specialization

through reduced annual species range dynamics [30,69], facili-

tating adaptation to local foraging niches. This may be caused

by lower population variability in climatically stable areas, how-

ever, the direct association between niche breadth and

climatically induced population dynamics still lacks sufficient

support by empirical evidence [70]. Also, as a positive direct

link from specialization to SRS remained present in all SEM

models, we note that we cannot rule out the opposing hypoth-

esis, i.e. that less specific adaptations to local food resources

may extend the range over which species can occur, resulting

in proportionally fewer SRS in the more generalized commu-

nities. Thus, although we are able to confirm the hypothesized

interrelatedness between SRS and specialization, we are

unable to identify firmly the underlying mechanism causing this

association or their causal relationships with the present data.

In addition to the contemporary climate, we found corre-

lations with the estimates of historical climate anomaly.

However, their effects were less consistent in the follow-up

analyses (electronic supplementary material, figures S3 and

S4) than those of the contemporary climate, which in our

models showed greater and more consistent importance in pre-

dicting SRS and specialization. This indicates that Late

Quaternary climate stability may play a role, but a minor one

compared to contemporary climate. Notably, in contrast to

the suggested importance of historical climate changes for

species range dynamics in previous studies [11,31], our results

indicate that for hummingbirds, contemporary seasonality is

more important for the preservation of SRS [69]. The observed

positive link between precipitation anomaly and specialization

could derive from historical high productivity, which ulti-

mately facilitates specialization. In contrast, the positive

association with SRS could be explained by recent speciation

events following the onset of glacial cycles during the Late

Pleistocene, where species repeatedly disperse, become

isolated, and possibly speciate in a heterogeneous environ-

ment—e.g. on mountain tops [71]—see Garcia-Moreno et al.
[72] for an explicit example with hummingbirds. Mechanisms,

such as the latter, related to the evolutionary history of species

also operate on timescales beyond the last glacial maximum

[11,69] and may influence the inter-correlation of richness of

SRS, high levels of specialization, and local high speciation-

low extinction dynamics. Therefore, in order to understand

what causes communities consisting of mainly SRS to be

more specialized, one could test the hypothesis that specialized

hummingbirds and their nectar-food plants have concerted

population dynamics in more stable environments, ranking

from current seasonality to climates at deep evolutionary time-

scales [73], or whether communities with high SRS and

specialization reflect ongoing speciation [71]. This could poten-

tially identify the main mechanism and temporal scale
facilitating specialization in communities consisting of

mainly SRS, which have lower dispersal ability and may thus

depend more on nectar-food plants from the local community.

Irrespective of the exact mechanism involved, the detected

relationship between SRS and specialization has relevance for

ecological and evolutionary theory regarding their respective

geographical patterns. Specifically, it illustrates that inter-

specific interactions are of great importance to consider when

studying biological patterns on large spatial scales, at least

for highly specialized systems such as hummingbird–plant

communities. Our results also have implications for conserva-

tion of species engaged in mutualistic associations, especially

as anthropogenic activity may impact mutualistic interactions

[74], and cause pollinator and linked plant extinctions [75,76].

For instance, the strong link between SRS and specialization

indicates that some communities may be fragile in multiple

ways, both by having SRS that are slow in tracking ongoing cli-

mate changes and by having specialized species less prone to

switching their interactions and at higher risk of secondary

extinctions [30,31,77].
Data accessibility. Location, network characteristics, and SRS (the pro-
portion of SRS) values of each hummingbird–plant network is
presented in the electronic supplementary material, table S1. The
same dataset has also been used and described for the analyses in
Martin González et al. [20].
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69. Fjeldså J, Lambin E, Mertens B. 1999 Correlation
between endemism and local ecoclimatic stability
documented by comparing Andean bird
distributions and remotely sensed land surface data.
Ecography 22, 63 – 78. (doi:10.2307/3683208)

70. Vázquez DP, Stevens RD. 2004 The latitudinal
gradient in niche breadth: concepts and evidence.
Am. Nat. 164, E1 – E19. (doi:10.1086/421445)

71. Weir JT. 2006 Divergent timing and patterns of species
accumulation in lowland and highland neotropical
birds. Evolution 60, 842 – 855. (doi:10.1554/05-272.1)

72. Garcia-Moreno J, Arctander P, Fjeldså J. 1999 Strong
diversification at the treeline among Metallura
hummingbirds. Auk, 116, 702 – 711. (doi:10.2307/
4089331)

73. Marske KA, Rahbek C, Nogués-Bravo D. 2013
Phylogeography: spanning the ecology-evolution
continuum. Ecography 36, 1169 – 1181. (doi:10.
1111/j.1600-0587.2013.00244.x)
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