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ABSTRACT

Aim To investigate the association between hummingbird–plant network struc-
ture and species richness, phylogenetic signal on species’ interaction pattern, insu-
larity and historical and current climate.

Location Fifty-four communities along a c. 10,000 km latitudinal gradient across
the Americas (39° N–32° S), ranging from sea level to c. 3700 m a.s.l., located on the
mainland and on islands and covering a wide range of climate regimes.

Methods We measured the level of specialization and modularity in mutualistic
plant–hummingbird interaction networks. Using an ordinary least squares
multimodel approach, we examined the influence of species richness, phylogenetic
signal, insularity and current and historical climate conditions on network struc-
ture (null-model-corrected specialization and modularity).

Results Phylogenetically related species, especially plants, showed a tendency
to interact with a similar array of mutualistic partners. The spatial variation
in network structure exhibited a constant association with species phylogeny
(R2 = 0.18–0.19); however, network structure showed the strongest association with
species richness and environmental factors (R2 = 0.20–0.44 and R2 = 0.32–0.45,
respectively). Specifically, higher levels of specialization and modularity were asso-
ciated with species-rich communities and communities in which closely related
hummingbirds visited distinct sets of flowering species. On the mainland, speciali-
zation was also associated with warmer temperatures and greater historical tem-
perature stability.

Main conclusions Our results confirm the results of previous macroecological
studies of interaction networks which have highlighted the importance of species
richness and the environment in determining network structure. Additionally, for
the first time, we report an association between network structure and species
phylogenetic signal at a macroecological scale, indicating that high specialization
and modularity are associated with high interspecific competition among closely
related hummingbirds, subdividing the floral niche. This suggests a tighter
co-evolutionary association between hummingbirds and their plants than in pre-
viously studied plant–bird mutualistic systems.
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INTRODUCTION

An urgent challenge facing ecologists today is to understand

how ecological, evolutionary and environmental mechanisms

affect the structure and function of ecological communities. A

better understanding of how these processes form and maintain

communities should help us to construct more robust theories

and accurate models of community dynamics to predict how

species and communities may respond to disturbance (Vázquez

et al., 2009a; Woodward et al., 2010). For this purpose, the use of

network approaches for studying complex communities of

interacting species, i.e. networks representing species as nodes

and interactions as links between species, has significantly

advanced our understanding of ecological systems (Woodward

et al., 2010).

For instance, research on mutualistic networks such as plant–

pollinator or plant–frugivore interactions has revealed that these

communities typically exhibit a number of architectural attrib-

utes, such as complementary specialization and modularity,

which differ significantly from random interactions among

species (Olesen et al., 2007; Blüthgen, 2010; Dalsgaard et al.,

2011, 2013; Schleuning et al., 2012, 2014; Trøjelsgaard & Olesen,

2013; Dormann & Strauss, 2014; Sebastián González et al.,

2015). Complementary specialization measures the exclusive-

ness in species interactions. Specifically, it is a measure of the

deviation from a neutral scenario in which species interact solely

according to their availability, measuring a species’ availability

either as its abundance or its interaction frequency (Blüthgen

et al., 2006; Fig. 1). Modularity quantifies whether species inter-

act more frequently with subsets of available species within a

community, forming modules of densely interacting species with

loose connections between modules (Olesen et al., 2007; Fig. 1).

Such modules have been suggested to reflect co-evolutionary

units (Olesen et al., 2007), within-network functional speciali-

zation (Maruyama et al., 2014) and phenological units of species

in environments with a strong climatic seasonality (Martín

González et al., 2012; Schleuning et al., 2014).

These architectural attributes have a profound impact on

the dynamics of ecological communities. For example, higher

levels of complementary specialization have been linked to

higher dependences between species and, hence, to a higher

risk of secondary extinctions (Blüthgen, 2010); whereas high

levels of modularity may at first provide higher network resili-

ence to perturbations, as these are not typically spread across

modules, it ultimately may result in unconnected modules,

community fragmentation and rapid species loss (Thébault &

Fontaine, 2010; Stouffer & Bascompte, 2011). Complementary

specialization and modularity are typically related, as some

degree of modularity necessarily implies a certain level of

complementary specialization for a subset of species from the

available species pool (Dormann & Strauss, 2014). Neverthe-

less, these metrics measure different aspects of interaction spe-

cialization and, hence, may show disparate dynamics and

associations with different ecological, evolutionary and envi-

ronmental factors.

Thus, comparative studies at macroecological scales, where

differences in network structure can be associated with varying

ecological, evolutionary and environmental factors, may provide

valuable insights into the structure and dynamics of ecological

networks (Dalsgaard et al., 2011, 2013; Schleuning et al., 2012,

2014; Trøjelsgaard & Olesen, 2013; Sebastián González et al.,

2015). For instance, species richness may promote a higher

degree of complementary specialization and modularity by

increasing interspecific competition and providing more species

to interact with, i.e. allowing finer niche partitioning (e.g.

Dalsgaard et al., 2011; Junker et al., 2013). Additionally, evolu-

tion may structure biotic interactions via niche conservatism, as

closely related species may display more similar phenotypes,

spatial distributions and ecological interactions than distantly

related species (Webb et al., 2002; Ives & Godfray, 2006; Rezende

et al., 2007; Vázquez et al., 2009a). Alternatively, closely related

species that experience strong interspecific competition may

undergo niche partitioning, competitive exclusion or resource-

use complementarity (Webb et al., 2002; Rezende et al., 2009;

Krasnov et al., 2012). The environmental setting may also affect

biotic interactions. Historical climatic stability may promote

specialization and modularity by providing species with more

opportunity to co-evolve over longer periods of time compared

with species from climatically more unstable areas. Notably,

large late Quaternary glacial–interglacial climate change is

coupled with a decreased modularity in pollination networks

(Dalsgaard et al., 2013) and decreased specialization in

hummingbird–plant networks (Dalsgaard et al., 2011). Like-

wise, current environmental conditions may influence the iden-

tity and strength of species interactions by altering the spatial

distribution, phenophases and foraging capability of species

(Cruden, 1972; Martín González et al., 2009; Dalsgaard et al.,

2011, 2013; Schleuning et al., 2012, 2014). For example, bird

pollination has been reported to become increasingly important

and specialized in areas of current high precipitation and low

temperatures, possibly because the diversity and activity of

insect pollinators is lower in cold and wet environments due to

thermoregulatory and nesting constraints (Cruden, 1972;

Dalsgaard et al., 2009, 2011; Martín González et al., 2009).

Macroecology of hummingbird–plant networks
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Finally, insularity may influence pollination network structure,

as insular communities typically show significantly lower levels

of specialization and modularity compared with mainland ones

(Olesen et al., 2002; Dalsgaard et al., 2013).

Despite the recently increasing interest in determining the

influence of species richness, phylogenetic signal and past

and current environmental conditions on network structure

(Dalsgaard et al., 2011, 2013; Schleuning et al., 2012, 2014;

Sebastián González et al., 2015), very little is known about the

relative importance of these factors. Only Schleuning et al.

(2014) studied their combined influence on the modular pat-

terns of mutualistic networks. Specifically, they used a dataset of

18 frugivore bird–plant networks, reporting a high modularity

in areas having low temperatures and high temperature season-

ality, whereas modularity exhibited no detectable association

with species phylogenetic history and historical climate. Here,

we examine how the structure of hummingbird–plant networks,

another type of mutualistic assemblage, is associated with

species richness, phylogenetic signal and environmental con-

ditions. To do this, we compiled a dataset consisting of 54

high-resolution quantitative hummingbird–plant interaction

networks and combined them with complementary data on

species richness, state-of-the-art species phylogenies and simu-

lations of palaeo- and current climate. In accordance with

previous studies on pollination networks, we show that comple-

mentary specialization and modularity are influenced by species

richness and climatic conditions. Additionally, for the first time,

we report an association between network structure and species

Figure 1 Diagram illustrations depicting two different communities and the characteristics and relationship between complementary
specialization (H2′) and quantitative bipartite modularity (QuanBiMo). Both communities depict 700 interaction events between 10 plants
and 5 pollinators. Plants are labelled as numbers 1–10 in the matrix and as orange (light tone) nodes in the network representation, and
pollinators by letters A–E in the matrix and as blue (dark tone) nodes in the network. Interaction frequencies between plants and
pollinators are illustrated as numbers of interaction events in the matrix format and as varying line widths in the network illustration.
Complementary specialization measures the exclusiveness in species interactions, whereas modularity quantifies whether species interact
more frequently with subsets of available species within a community. Community A exhibits a moderate complementary specialization,
with different species pairs exhibiting various degrees of complementary specialization. For instance, species pair A–1 shows a high
complementary specialization, as hummingbird A visits exclusively and with high frequency (155 times) plant 1, which in turn is only
visited once by another hummingbird. On the other hand, the complementary specialization of pair C–4 is lower than for the previous pair
despite these species interacting with the same frequency because hummingbird C also interacts with other plant species, i.e. interaction
C–4 is less exclusive. Interactions in community B are also somewhat specialized (species favoured interactions with subsets of the available
partners), but the exclusiveness of these interactions is lower than for community A. Both communities show very similar values for
corrected modularity and can be divided into three distinct modules, although the modules comprise a different array of species. By having
different degrees of complementary specialization but similar values of modularity, these communities show that although they are
positively correlated, these metrics measure complementary but different aspects of specialization. Network drawings were created using
Network3D and energized with the 3D Force-directed algorithm to enhance visualization of modularity patterns (Yoon et al., 2004;
Williams, 2010).

A. M. Martín González et al.
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phylogenetic signal at a macroecological scale. Specifically, com-

munities where closely related hummingbirds interact with

distinct sets of plant species exhibited higher levels of comple-

mentary specialization and modularity.

MATERIAL AND METHODS

Hummingbird–plant interaction networks

We compiled a large dataset of 54 high-resolution and geo-

graphically widely distributed hummingbird–plant interaction

networks from published and unpublished sources (Fig. 2; see

Table S1 for full references and Dalsgaard et al. (2011) for a

previous version of this dataset). This dataset does not include

networks which have not sampled the entire floral community,

i.e. we discarded studies which focused only on ornithophilous

species or on specific floral or hummingbird groups. We also

discarded illegitimate interactions, i.e. our database focuses

exclusively on interactions which have the potential for

pollination. These networks describe the interaction frequency

between plants and hummingbirds, recorded as the number of

observed visits. In total, our dataset comprises 141 species of

hummingbirds belonging to all major hummingbird lineages

(about 42% of all described species; McGuire et al., 2014)

and 824 plant species belonging to 79 different plant families

(Appendix S1).

Mutualistic hummingbird–plant interaction networks consti-

tute a particularly suitable model system for exploring large-

scale patterns in network structure because there is ample

knowledge of the historical biogeography of hummingbirds,

these assemblages are widely distributed in a variety of ecosys-

tems across the Americas and they offer examples covering

the entire interaction specialization–generalization spectrum

(Bleiweiss, 1998; Dalsgaard et al., 2011). Furthermore, our data

consist of a single and monophyletic pollinator group (Brown &

Bowers, 1985; McGuire et al., 2014), allowing us to explore the

association between phylogeny and overall network structure

more precisely.

Figure 2 Map of the American continent showing the location of the 54 study sites and a number of example networks located along a
species richness gradient. Some networks have been moved slightly horizontally to maximize clarity (the exact coordinates of the localities
are given in Table S1). The grey shading of the background illustrates elevation, with darker shades depicting higher elevations. Localities
with darker shades (darker green) denote networks with a higher richness. For each illustrated network, the reference number and a concise
description of the vegetation type is given, along with a network drawing. For the network drawings, blue (dark tone) and orange (light
tone) nodes depict hummingbird and plant species, respectively, while line width depicts the log + 1 frequency of interaction among
species. Notice that species-rich networks in general present more complex structures, with networks 11, 21 and 50 exhibiting the lowest
corrected complementary specialization; networks 50, 11 and 21 the lowest corrected modularity; networks 53, 12 and 4 the highest
corrected complementary specialization; and networks 10, 53 and 4 the highest corrected modularity, respectively. Complementary
specialization measures the exclusiveness in species interactions, whereas modularity quantifies whether species interact more frequently
with subsets of available species within a community. Network drawings were created using Network3D and energized with the 3D
Force-directed algorithm to enhance visualization of modularity patterns (Yoon et al., 2004; Williams, 2010).

Macroecology of hummingbird–plant networks
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Finally, the spatial distribution of these networks extends

from sea level to c. 3700 m a.s.l. and spans a c. 10,000 km gra-

dient from 39° N to 32° S, from tropical and subtropical ecosys-

tems in South America to temperate communities in North

America. The spatial distribution includes both mainland and

insular communities and consists of communities from various

environmental settings (Fig. 2).

Network composition and network metrics

For each location, interaction networks were quantified in terms

of the number of interaction events between hummingbird

and plant species. For each network we calculated two comple-

mentary metrics that describe the degree of specialization or

specificity of hummingbird–plant interactions: complementary

specialization (Blüthgen et al., 2006) and quantitative bipartite

modularity (Dormann & Strauss, 2014). These metrics were

correlated in our dataset R2 = 0.78 (Table S2) but were chosen to

more fully characterize how evolutionary and environmental

factors associate with specialized network structures. For the

calculations we used the R package bipartite 1.20 (Dormann

et al., 2009).

1. Complementary specialization (H2′) describes how species

restrict their interactions relative to random expectations based

on species abundances/interaction frequency. Complementary

specialization is calculated as H p pij ij

j

c

i

r

2

11

= − ⋅( )
==

∑∑ ln , where pij

reflects the proportional number of interactions of each

species relative to their availability, i.e. for their respective mar-

ginal total (in our case total interaction frequency) for r plant

and c animal species. We illustrate this in Fig. 1; for instance,

from the example community A from Fig. 1, p 1A = 0.99 (which

results from an interaction frequency of 155 between plant 1

and hummingbird A, over a marginal total of 155 + 1 = 156 for

plant 1) and pA1 = 1 (155 over 155). Hence the interaction A–1

exhibits a high complementary specialization, as hummingbird

A visits plant 1 exclusively and at a high frequency, while plant

1 is only visited, and at a very low frequency, by another

hummingbird species. If the majority of a community has

interactions with such high complementarity, the community

will exhibit high values of complementary specialization

(Blüthgen et al., 2006). On the other hand, species C and 4 also

interact 155 times, but in this case hummingbird C interacts

with many other plant species and has a higher marginal

total, lowering the complementary specialization of this pair

(pC4 = 0.36, p4C = 1).

We standardized complementary specialization as

H
H H

H H
2

2 2

2 2

′ =
−

−
max

max min

, so that H2′ ranges from minimum

(H2′ = 0) to maximum (H2′ = 1) link selectiveness, where species

establish distinct and highly specific interactions for interactions

that are different from the expected ones (Blüthgen et al., 2006).

Thus, H2′ quantifies the deviation of the observed interactions

from those expected under a neutral assumption that species

interactions are entirely determined by partner availability. This

assumption minimizes the influence of rare interactions by

causing frequent interactions to dominate H2′.
2. Quantitative bipartite modularity (QuanBiMo) is an algo-

rithm which places species among an a priori unspecified

number of modules, such that species interact at high frequen-

cies within their module and show few links and/or low fre-

quency links with species outside their module (Dormann &

Strauss, 2014; Schleuning et al., 2014; Fig. 1). Such partition is

based on a hierarchical representation of interaction frequencies

and optimal allocation of species into modules. Specifically,

the algorithm maximizes the bipartite version of Newman’s

modularity (Q), so that Q
N

A K m mij ij i j

ij

= −( ) ( )∑1

2
δ , , where

N reflects the total number of interactions, Aij is the normalized

number of interactions between species i and j, Kij is the

expected interaction probability between species i and j drawn

from a neutral model of interactions and the indicator function

δ m mi j,( ) equals 1 when species i and j are placed in the same

module and 0 otherwise. Modularity ranges from no (Q = 0)

to maximum (Q = 1) modularity. We ran the QuanBiMo

algorithm following the methodology established by

Schleuning et al. (2014) and the default specifications of the

computeModules function in bipartite; that is, for each network

we chose the partition showing the highest modularity from five

independent runs of the algorithm (Dormann & Strauss, 2014;

Schleuning et al., 2014). Variations in the likelihood values of

modularity were negligible (all SD < 0.05).

As raw values for network metrics may be affected by species

frequencies and network connectivity, network estimates for

complementary specialization and modularity were corrected

using null models (Schleuning et al., 2012, 2014; Dormann &

Strauss, 2014). Null models simulated matrices with the same

number of species and interactions as the empirical network,

with a species’ interaction probability distribution drawn from

observed species connectivity [vaznull model in bipartite

(Vázquez et al., 2007), except for network 3 for which we used

the r2dtable null model in bipartite due to the impossibility of

calculating vaznull]. Corrected metrics were then calculated as

the difference between the value of the empirical network and

the mean value obtained from 1000 and 100 null models for

H2′ and QuanBiMo, respectively (as in Schleuning et al., 2012,

2014). As for the calculation of empirical QuanBiMo values,

for each of the 100 null matrices we used the maximum value

of five independent runs of the QuanBiMo algorithm

(Schleuning et al., 2014). By extracting the network structure

achieved under null conditions, corrected metrics quantify

how much an empirical community departs from an average

random one with an equivalent set of species, number of inter-

actions and interaction probability distribution. Notice that for

instance, as Fig. 1 illustrates, a corrected value of 0.3 in modu-

larity gives no information on the uncorrected values, only

that there is a 0.3 difference between observed and null values,

e.g. this value can result both from a raw observed value of 0.4

and a mean null value of 0.1 (Fig. 1 community A), or from a

raw observed value of 0.5 and a mean null value of 0.2 (Fig. 1

community B), etc.

A. M. Martín González et al.
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Analysis of phylogenetic signal in bipartite
interaction networks

We measured the phylogenetic signal exhibited by

hummingbird–plant networks by quantifying the degree to

which closely related species share more interaction partners

than distantly related species (Ives & Godfray, 2006). Species

interactions are considered to exhibit a higher phylogenetic

signal when closely related species share relatively more interac-

tion partners than distantly related species (Ives & Godfray,

2006; Vázquez et al., 2009b).

We used state-of-the-art phylogenies of plants and humming-

birds to create variance–covariance matrices, which quantify the

phylogenetic relatedness of plants or hummingbirds in each

community, using the ‘vcv’ function from the R package ape

(Paradis et al., 2004). We fitted these vcv matrices to each

observed bipartite interaction matrix through a linear

model using the ‘pblm’ function from the R package picante

(Kembel et al., 2010). This analysis results in two independent

measures of the strength of the phylogenetic signal, one for

plants (dplants) and another for hummingbirds (dhummingbirds),

together with an overall measure of strength of the model

fits for the entire community (measured as mean squared error

of the model, MSE). We evaluated three different models,

one assuming no phylogenetic signal (dplants = dhummingbirds = 0;

Star model), one assuming a maximum phylogenetic signal

(dplants = dhummingbirds = 1; Brownian model) and a final one which

incorporated the combined observed phylogenetic signals

(estimated dplants and dhummingbirds; Data model). We used the

bootstrapping option to calculate confidence intervals for dplants

and dhummingbirds. Networks where these confidence intervals did

not overlap zero or when the MSEData < MSEStar were considered

to exhibit a significant phylogenetic signal (Ives & Godfray,

2006; Vázquez et al., 2009b). For a list of all species included in

this study and a detailed explanation of the phylogenetic analy-

sis, see Appendices S1 & S2, respectively.

Environmental variables

We analysed six variables describing current and historical tem-

perature and precipitation known or hypothesized to affect the

structure of pollination networks. Four of the six variables

describe current climatic conditions: mean annual temperature

(MAT, °C), temperature seasonality (TS, SD × 100), mean

annual precipitation (MAP, mm) and precipitation seasonality

(PS, coefficient of variation). We obtained these measurements

from the WorldClim dataset with spatial resolutions of

1 km × 1 km (http://www.worldclim.org; see also Hijmans

et al., 2005). The historical climate variables, the velocity of

temperature and the velocity of precipitation, reflect the

speed of change of temperature and precipitation change

between the Last Glacial Maximum (LGM) and pre-industrial

times (VT, m/year; VP, m/year), following the definition of

Loarie et al. (2009). Projections of the global climate during

the LGM and pre-industrial times were generated by the

Hadley Centre Coupled Model Version 3 (HadCM3) with a

resolution of 3.75° × 2.5° (Singarayer & Valdes, 2010), and were

downscaled to 0.1° × 0.1°. For each study site, climate estimates

were calculated as the average values of all 1 km × 1 km grid cells

(0.1° × 0.1° for palaeoclimatic data) within a concentric distance

of 10 km from the sampling location. Additionally, we scored

whether a network was located on the mainland (0) or on an

island (1).

Macroecological models

We used a multimodel approach based on information theory as

outlined in Diniz-Filho et al. (2008) to simultaneously evaluate

the relationships of species richness, phylogenetic signal and

environment with hummingbird–plant network structure. First,

for each network metric, we calculated full ordinary least

squares (OLS) regression models which included the following

10 predictor variables: (1) species richness (network size), (2)

the phylogenetic signal in the interaction pattern of plants

(dplants), (3) the phylogenetic signal in the interaction pattern of

hummingbirds (dhummingbirds), (4) annual average temperature,

(5) temperature seasonality, (6) annual average precipitation,

(7) precipitation seasonality, (8) temperature-change velocity,

(9) precipitation-change velocity, and (10) insularity. Second,

for each network metric we used the Akaike information cri-

terion (AICC) aiming to identify minimum adequate models

(MAMs) among all possible model combinations of our 10 pre-

dictor variables. MAMs were defined as models exhibiting a

difference in AICC of at least two points lower than other models

(i.e. ΔAICC < 2; Burnham & Anderson, 2002; Diniz-Filho et al.,

2008). As no single MAM was identified (often around 10

models had ΔAICC < 2) we instead used a multimodel approach.

Specifically, instead of calculating regression coefficients in a

single best model (MAM), we calculated the overall importance

of each model (wi) as the relative likelihood of any given model

i over the sum of the likelihoods of the entire dataset of models,

such that

wi

i

R

r

R=
−( )

−( )
=

∑

exp

exp

,

1

2
1

21

Δ

Δ

Δi being the difference in AIC between the set of R models, so

that the relative strength of each model depends on the entire set

of models. We report the standardized regression coefficients

and the overall importance (Σwi) of each variable for an aver-

aged OLS model based on weighted wi (Burnham & Anderson,

2002; Diniz-Filho et al., 2008), for which we adopted an impor-

tance cut-off value of ≥ 0.80. The standardized regression coef-

ficients were also reported for the OLS regression model

including all 10 predictor variables (‘full’ model). For each

network metric, we used partial regressions to separate the total,

unique and shared variation explained by species richness,

phylogenetic signal and environmental factors in the ‘full’

models.

The structure of mainland and island hummingbird–plant

and pollination networks may differ, as previous studies predict
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higher levels of generalization and less modularity for insular

pollinator communities (Olesen et al., 2002; Dalsgaard et al.,

2009, 2013). The colonization of the Caribbean by humming-

birds has been considerably more recent than that of mainland

America (c. 5 Ma versus 12–22 Ma for North and South

America, respectively), and consequently insular hummingbirds

have had less time for specialization and co-evolution with

their nectar plants than their mainland counterparts (Bleiweiss,

1998; McGuire et al., 2014). Moreover, Caribbean communities

undergo a high level of periodic disturbances, which may hinder

high levels of specialization on islands (Graves & Olsen, 1987;

Rivera-Marchand & Ackerman, 2006). Hence, the relationship

between species richness, phylogenetic signal and environmen-

tal factors and network structure may differ between mainland

and insular communities. For instance, the influence of histori-

cal climate change may be weaker on islands than on the main-

land (Dalsgaard et al., 2013, 2014). As our dataset contains too

few island networks (n = 9) to allow for a separate analysis for

insular networks, we explored putative differences in mainland

and island networks by analysing a subset of the dataset com-

posed exclusively by networks from the mainland (Mainland;

n = 45 networks) and compared these results with those of the

entire dataset (Global dataset, which includes both mainland

and insular communities; n = 54 networks).

For all macroecological models, we log10-transformed species

richness, temperature seasonality, temperature velocity and

precipitation velocity; we squared temperature and square-

root transformed precipitation. All other variables were left

untransformed. In all spatial models we tested whether signifi-

cant positive spatial autocorrelation remained in model resid-

uals of the ‘full’ models (i.e. whether P < 0.05 in all distance

classes, tested using 10 equally spaced distance classes and apply-

ing a permutation test with 10,000 iterations). As no positive

spatial autocorrelation was observed we did not build more

sophisticated spatial models. All regression analyses were con-

ducted using the software Spatial Analysis in Macroecology

(SAM) 4.0 (Rangel et al., 2010).

To better support our findings, we performed a number of

complementary macroecological models which included sam-

pling effort as a predictor variable (Appendix S3), observed

(uncorrected) metrics of network structure instead of null

model corrected metrics (Appendix S4) and climate anomaly as

a measure of historical climate stability instead of climate

change velocity (Appendix S5).

RESULTS

Phylogenetic signal on species interaction patterns

Values for the independent phylogenetic signals of plants (dplants)

and hummingbirds (dhummingbirds) were low but above zero in 85%

and 65% of the networks, respectively, suggesting a significant

relationship between phylogenetic signal and species interaction

patterns. The confidence intervals (CI) of dhummingbirds overlapped

with zero in a higher number of networks than did CIs of dplants

(82% and 57%; see the table in Appendix S2), indicating that a

significant association between phylogeny and interaction pat-

terns was exhibited mostly by plant species.

We examined the overall association between phylogeny and

the structure of bipartite interaction networks by comparing the

mean squared error (MSE) of the model fit among models

adjusted after observed phylogenetic signal (MSEdata), models

which assumed no phylogenetic signal (MSEstar) and models

which assume a maximum signal (MSEBrownian). Results showed

that most networks exhibited a significant phylogenetic

signal (in 52 networks MSEdata < MSEstar, in one network

MSEdata = MSEstar and in one MSEdata > MSEstar; in all cases

MSEBrownian clearly had the highest values; see table in Appendix

S2). For example, in most communities the model which fitted

best to the data (the one having the lowest error) was achieved

when adjusting the model with observed phylogenetic signals of

plants and hummingbirds (MSEdata). Nevertheless, most differ-

ences between MSEdata and MSEstar were small, and much smaller

than between MSEdata and MSEBrownian, indicating that, in general,

the association between phylogenetic signal and species interac-

tion pattern was weak.

Macroecological models

Full OLS models on corrected network metrics were able to

account for 54–62% of the observed variation in network

metrics across the sampled communities (Tables 1 & S3, Fig. 3).

Species richness and environmental factors showed the strong-

est association with network structure, although with varying

strengths across the ‘Global’ and ‘Only Mainland’ datasets and

network metrics (Tables 1 & S3, Fig. S1). On the contrary, the

associations between phylogenetic signal and network structure

remained constant, exhibiting low regression coefficients in

both metrics and datasets (Tables 1 & S3). Collectively, comple-

mentary specialization exhibited a stronger association with

current temperature and historical temperature stability, and to

a lesser extent with species richness, whereas modularity had the

strongest association with species richness (Fig. 3, Table S3).

When the 10 predictor variables included in the full OLS

models were examined in detail, species richness and humming-

bird phylogenetic signal were the only variables showing an

important, spatially consistent and widespread association with

network structure, emerging as highly important for both

network metrics and datasets. Species richness showed a strong

positive relationship with complementary specialization and

modularity (Table 1). On the contrary, a higher phylogenetic

signal among hummingbirds was related to a lower complemen-

tary specialization and level of modularity. In other words,

despite the association between phylogenetic signal and species

interaction pattern being weak and the weighted regression

coefficients of dhummingbirds low, complementary specialization

and modularity consistently increased when closely related

hummingbirds visited distinct arrays of plant species (Tables 1

& S3, Fig. 3).

Complementary specialization was also highly associated

with the environmental conditions, as the total variation

explained by environmental factors was consistently higher than

A. M. Martín González et al.
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the variation attributed to species richness and phylogenetic

signal in both the ‘Global’ and ‘Only Mainland’ datasets, and

approximated to the variation explained by the full models

(Table S3, Fig. 3). The amount of unique variation (i.e. variation

explained exclusively by the predictor type) explained by envi-

ronmental factors was similar to the unique variation explained

by species richness in the Global dataset (Table S3, Fig. 3).

However, when examining only mainland networks, the unique

variation explained by environmental factors was twice as

much as the unique variation explained by the other two pre-

dictor types (Table S3, Fig. 3). Among the seven environ-

mental variables examined, only current temperature and his-

torical temperature stability showed a strong relationship to

complementary specialization, with increasing complementary

specialization in communities with current warmer tempera-

tures and with a higher historical temperature stability

(Table 1).

Quantitative bipartite modularity showed the strongest asso-

ciation with species richness, particularly in the global dataset,

with environmental conditions having a similar strength associa-

tion among mainland communities (Table S3, Fig. 3).

For both complementary specialization and modularity.

Shared variability among species richness and phylogenetic

signal (i.e. variability explained by these two predictor types)

was non-existent, i.e. richness and phylogenetic signal were dis-

tinctly associated with specialization and modularity. Shared

variability between environmental factors and species richness

or phylogenetic signal was low (Table S3).

The remaining five environmental variables (insularity, tem-

perature seasonality, mean annual precipitation, precipitation

seasonality and precipitation change velocity) as well as

phylogenetic signal in the interaction pattern of plants, showed

no important associations with null-model-corrected network

structure (Table 1).

Figure 3 Coefficients of determination (R2) for complementary specialization and modularity obtained from partial regression of the full
models, i.e. models including all 10 predictor variables (see Table 1 for standardized coefficients of each variable and more details of model
fit, and Table S3 for the R2 values used in this figure). Complementary specialization measures the exclusiveness in species interactions,
whereas modularity quantifies whether species interact more frequently with subsets of available species within a community. We represent
values for all networks in the study (Global dataset; n = 54) and excluding insular communities (Only Mainland; n = 45). Bars illustrate the
association between the different ‘predictor types’ and network structure. Predictor types refers to (1) species richness (one variable), (2)
phylogenetic signal (two variables: phylogenetic signal in the interaction pattern of plants and hummingbirds), and (3) environmental
factors (eight variables: insularity, average annual temperature, temperature seasonality, total annual precipitation, precipitation seasonality,
temperature and precipitation-change velocity between the Last Glacial Maximum and pre-industrial times). The amount of variation
explained by each pooled predictor type is coded with different shades: bars coloured in darkest colour/shade depict the overall variation
explained by all factors together; medium colours/shades illustrate the total variation explained by that predictor type; light colours/shades
show the unique variation explained by each predictor type and not shared by other variable types. H2′, complementary specialization;
QuanBiMo, quantitative bipartite modularity.
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DISCUSSION

As for previous macroecological studies of interaction net-

works, we found complementary specialization and modularity

to vary along with environmental conditions and species rich-

ness. Additionally, for the first time, we report an association

between phylogenetic signal and network structure at the

macroecological scale. Specifically, species richness and

phylogenetic signal in hummingbird interaction patterns were

the two predictor variables that were most consistently asso-

ciated with network structure, with an association between

complementary specialization and current and historical tem-

perature conditions limited to mainland networks.

Hummingbird phylogenetic signal had a constant associa-

tion with both complementary specialization and modularity,

and on both the Global and Only Mainland datasets, although

the variability associated with phylogenetic signal was the

lowest of all predictor types. A weak but significant relation-

ship between phylogenetic signal and species interaction pat-

terns within ecological networks has also been reported by

previous studies on food webs, host–parasite networks and

plant–pollinator networks (Ives & Godfray, 2006; Vázquez

et al., 2009b; Krasnov et al., 2012; Rafferty & Ives, 2013). These

studies also identified asymmetries in the phylogenetic signal

between trophic levels, with the association between

phylogenetic relatedness and species interaction pattern being

stronger at lower trophic levels, i.e. plants in our system (but

see Rezende et al., 2007). According to these studies, such

asymmetries may stem from a differential relationship between

phylogeny and the interaction pattern of each trophic group,

as species from the higher trophic group (‘consumer’ species)

are more likely to adjust their feeding behaviour according to

local conditions. Our results corroborate this hypothesis:

hummingbird phylogenetic signal showed a weaker relation-

ship with their interaction pattern than plant species

(dhummingbirds tended to be lower than dplants, and CI dhummingbirds

overlapped with zero in more networks). Nevertheless, and

unlike for plants which showed no association with the spatial

variation in network structure, hummingbird phylogenetic

signal was associated with network structure, with higher levels

of complementary specialization and modularity being con-

sistently achieved when closely related hummingbird species

visited distinct sets of flowering plant species. This suggests

that resource partitioning and interspecific competition among

closely related hummingbirds might play an important role in

structuring interactions in hummingbird–plant networks.

Indeed, interspecific competition is known to be strong among

hummingbirds, and has been noted as a potential driver of

patterns of hummingbird biodiversity (Brown & Bowers, 1985;

Bleiweiss, 1998; Cotton, 1998).

Species richness had the strongest association with both

metrics, and in both the Global and Only Mainland datasets,

except for complementary specialization in the mainland.

Higher species richness may result in a higher niche availabil-

ity, thus providing ample opportunities for biotic specializa-

tion. At the same time, higher species richness may increase

interspecific competition, which may explain why high

species richness leads to higher levels of complementary spe-

cialization and modularity (Rezende et al., 2009; Dalsgaard

et al., 2011; Krasnov et al., 2012; Junker et al., 2013). Moreover,

a higher plant richness may also translate into a temporally

stable availability of floral resources (or the establishment of a

constant minimum local flower supply), enabling a locally

constant hummingbird population and, hence, the potential

for biotic specialization (Montgomerie & Gass, 1981; Stiles,

1985; Araujo & Sazima, 2003; Cotton, 2007; Abrahamczyk

et al., 2011).

In the mainland, higher levels of complementary specializa-

tion were also found in warmer areas and in areas with higher

historical temperature stability. The former may again be

linked to higher interspecific competition in warmer areas, and

particularly in mainland settings, where hummingbird species

and phylogenetic richness is highest (Bleiweiss, 1998; McGuire

et al., 2014). This relationship might be stronger on the main-

land as insular pollinator faunas are typically depauperate

(Olesen et al., 2002). Moreover, in historically stable climates,

hummingbirds may have been able to establish long-term asso-

ciations with plants, which may lead to higher levels of local

adaptation, interaction specificity and specialization (see

Dalsgaard et al. (2011) for a study on a subset of the networks

from the dataset used here). Such long associations may lead

to higher complementary specialization in areas with low

temperature-change velocity, such as montane habitats and

tropical environments, leaving more generalized interaction

patterns to areas with low topography and, especially, higher

latitudes where changes in temperature velocity have been

greatest (Sandel et al., 2011). Moreover, a higher complemen-

tary specialization in areas of high historical temperature sta-

bility is consistent with general hummingbird historical

biogeography and speciation patterns, as the core area of

hummingbird speciation and diversity occurs in the Andean

highlands and in tropical lowland South America (Brown &

Bowers, 1985; Bleiweiss, 1998; McGuire et al., 2014). We note

that complementary macroecological analysis presented in

Appendices S3–S5 generally confirmed the importance of

species richness and hummingbird phylogenetic signal, and

also showed that observed (uncorrected) complementary

specialization/modularity were associated with insularity and

precipitation: areas of high precipitation and mainland com-

munities showing higher observed complementary specializa-

tion and modularity. Precipitation has previously been shown

to influence floral phenotypic specialization and the impor-

tance of hummingbird–plant interactions for entire pollination

communities (Cruden, 1972; Dalsgaard et al., 2009; Martín

González et al., 2009). The fact that precipitation and insular-

ity were only associated with observed complementary spe-

cialization and observed modularity, and not with null-model-

corrected values of these network metrics, may indicate that

insularity and precipitation do not directly influence the inter-

action pattern of species but rather associate indirectly with

network structure through species richness and/or interaction

probability distributions.
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CONCLUSIONS

Characterizing the potential ecological, historical and evolu-

tionary mechanisms associated with the structure of ecological

communities is a critical first step towards understanding the

determinants of community assembly and how climate change

may affect biodiversity (Woodward et al., 2010; Schleuning

et al., 2014). By examining null-model-corrected network

metrics, we are investigating how much observed communities

depart from random ones with an equivalent set of species and

interactions. Hence we are able to investigate whether a com-

munity presents a structure which differs significantly from

random and also to associate the difference in complementary

specialization and modularity with species richness and evolu-

tionary and environmental conditions.

We have shown that complementary specialization and

modularity in hummingbird–plant networks are associated with

species richness, hummingbird phylogenetic signal and environ-

mental factors acting at varying spatio-temporal scales and in

different aspects of network structure. Notably, species richness

and hummingbird phylogenetic signal showed a consistent asso-

ciation with network structure, with a more restricted but still

important role for current temperature and historical tempera-

ture stability, which were important among mainland commu-

nities. These results are markedly different from those for avian

seed-dispersal networks for which species phylogeny and his-

torical climatic stability were unrelated to modularity and

complementary specialization (Schleuning et al., 2012, 2014;

Sebastián González et al., 2015). Such a difference suggests that

hummingbirds and flowers engage in tighter co-evolutionary

associations than frugivorous birds and their plants, and hence

historical and evolutionary factors may have a stronger role in

hummingbird–plant assemblages than for frugivorous bird–

plant assemblages.
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